
How to Construct a Believable Opponent
using Cognitive Modeling in the Game of Set

Niels A. Taatgen (niels@ai.rug.nl)
Marcia van Oploo (marcia@ai.rug.nl)
Jos Braaksma (j.braaksma@ai.rug.nl)

Jelle Niemantsverdriet (jelle@niemantsverdriet.nl)
Department of Artificial Intelligence, Grote Kruisstraat 2/1

9712 TS Groningen, Netherlands

Abstract

An interesting domain of application for Cognitive
Modeling is the construction of computer opponents in
games. We present a model of the game of Set. The
model is sensitive to the difficulty of the situation in the
game, and can explain the difference between beginners
and experts. Furthermore, the model is used in a
computer game in which players can play Set against
various versions of the model.

Introduction
In computer games, the human player often faces one or
more computer opponents. In order to make the game
enjoyable, these computer opponents have to be
intelligent, otherwise they wouldn’t be much of a
challenge. The classical example of playing a game
against the computer is chess, and the focus of
designing a computer chess player has always been to
have a player that plays as good as possible. In fact,
since Deep Blue beat Kasparov the interest in computer
chess seems to have diminished, but maybe the recent
rematch against Kramnik will change matters.
Nevertheless, human chess players complain that
computer chess programs are no fun to play against. A
possible reason for this is that computer chess programs
have long left the approach of mimicking human chess
players, but instead focused on brute-force techniques.

This leads us to the idea that a computer opponent
becomes more interesting and enjoyable to play against
as it behaves more like a person. In this paper we will
explore this idea and demonstrate how cognitive
modeling can help to produce more interesting
computer opponents. The basic idea is relatively simple:
study how people (preferably at different levels of skill)
behave in the game you want a computer opponent of,
make a cognitive model of this behavior that closely
matches human behavior, and incorporate this in a
computer program.

The game we will use is the game of Set. Set is a card
game that is quite trivial to play perfect for a computer
program, so the challenge is to model an opponent that
is interesting to play against. Another interesting aspect

of Set is that it combines several aspects of cognition:
perception, information processing, strategy, learning
and time pressure. We will describe an experiment and
several possible models of playing Set, and incorporate
those in a program that can one can play against.

The game of Set
Set1 is played with a deck of 81 cards, and with as many
players as can sit around the table. Cards in Set have
pictures made out of symbols on them that can be
described by four attributes: color, shape, filling and
number. Each of the four attributes can have three
possible values, blue, green and red for colors,
rectangle, oval or wiggle for shape, solid, open or
speckled for filling, and one, two or three for number.
So two solid red ovals is a card, as is three blue
speckled wiggles. Of each possible combination of
attributes and values there is one copy in the deck,
hence 3 x 3 x 3 x 3 = 81 cards. In the game, twelve
cards are dealt open on the table, and the goal for the
players is to be the first to find a set, a combination of
three cards that satisfies the following rule:

For each attribute, the three values that the cards have
on this attribute are either all the same, or all different.

An example of a set is: one solid red oval, two solid red
ovals and three solid red ovals. Another example is: one
solid red circle, two open blue wiggles, three speckled
green rectangles. But one solid red oval, two solid red
ovals and three solid blue ovals is not a set, because two
cards are red and the third is blue. Figure 1 shows an
example of the game, which included the example of
the one, two and three red solid ovals (the reader may
try to find at least four more sets to get a taste of the
game).

How do people play Set?
One common experience of Set players is that there are
easy and hard sets. Some sets seem to pop out, while

1 Set is a game by Set Enterprises (www.setgame.com)

other require extensive search to find. Easy sets are the
sets that are perceptually similar: the sets in which three
out of four attributes are the same (four out of four is
impossible as there are no identical cards in the game).
The hard sets are the sets in which all four attributes
have different values. More precisely, we have three
levels of difficulty: three, two, one or zero attributes the
same. Our first hypothesis about human behavior is that
it will take longer to find a set as it is harder.

Our second hypothesis, based on extensive Set
experience of some of the authors is that novices and
experts do not differ much in performance on the easy
sets. Experts mainly excel at harder sets. A preliminary
explanation might be that easy sets are perceptually
obvious sets, and can be identified because they “pop
up”. If finding easy sets is really a purely perceptual
issue, one would expect little progress through learning.

Experiment
Twenty Set problems were presented to eight
participants. Each problem consisted of twelve Set
cards, in which a set had to be discovered. Only one set
was present in each problem, and these sets varied in
their level of difficulty: five of each level. The problems
were presented in random order to the participants, and
they had to work on a problem until they found the set
or until they had searched for 300 seconds.

The eight participants were all undergraduate students
of the University of Groningen. Four of them had little
or no experience in playing Set, and made up the
beginners group, and four were experienced players,
forming the expert group.

Figure 2 shows the results of the experiment. If a
participant hadn’t found a set within 300 seconds, this
was counted as 300 seconds in the results. The results
confirm our prior expectations that problems with more
attributes that have different values are harder to find.
Harder set problems take more time to solve, both for
experts and beginners. Experts are faster in general, but
not on the most easy problems, where experts and
beginners are about equal, confirming our second
hypothesis.

Strategies in playing Set
Set players report that they use the following strategies
in playing the game.

The first strategy is a general method to find sets. In
order to find a set, you first select two cards, and based
on these two cards you determine what the third card
should look like. For example, if the first card is one red
solid oval, and the second card two red solid rectangles,
then the third card has to be three red solid wiggles.
Once the third can is determined, one has to check
whether it is actually present on the table. If it is, a set
can be announced, if it isn’t, search is restarted.

The second strategy is only applicable in specific
situations. If there are many cards with the same
attribute value, for example, eight out of twelve cards
are blue, it is a good strategy to search for a set that
consists of blue cards. In Figure 1 six cards are solid, so
it might be a good idea to look for a set in which solids.

The third strategy mirrors the second strategy: if there
is only one card with a certain attribute value, for
example a single red card, then search for a set with that
card. In Figure 1 there is only one card with open
symbols, and this card is indeed part of at least three
sets.

Figure 1: Example of the game Set. The color names are
not part of the cards, but are added for clarity.

0

20

40

60

80

100

120

1 2 3 4

Difficulty (number of attributes different)

Ti
m

e
(s

ec
)

Beginner data
Expert data

Figure 2: Results of the experiment. Time to find a
solution is shown for both beginners and experts, and for
the four levels of difficulty.

A model of playing Set
The model of Set is based on the first strategy: choose
two cards and predict the third. The other two strategies
will prove to be unnecessary to explain the data,
although they might make a more believable player
eventually. We will explore this aspect in the final
application.

The model is implemented in ACT-R 5.0 (Anderson
& Lebiere, 1998), using the ACT-R/PM to interface the
model to the experimental task. In order to model the
task we implemented a new visual object to hold the
representation of a card: its color, shape, filling and
number. The following aspects of ACT-R 5.0 are
relevant for the present model:

- ACT-R has several perceptual-motor modules that
communicate through buffers with central
cognition.

- Declarative memory is also considered a module.
A certain fact can be requested, and this fact will
appear (when present) in the declarative memory
buffer (usually called the retrieval buffer).

- These modules operate asynchronously, so their
actions only have to be initiated by central
cognition. This allows for limited parallelism:
while an eye-movement is in progress, a request
can be made to declarative memory for a certain
fact, after which the results of the eye-movement
can be collected.

- All operations are controlled by production rules.
It is determined which production rules match the
current contents of the buffers, the best one is
chosen and its actions (buffer changes and new
buffer requests) are executed.

- Apart from buffers connected to modules, there is
a buffer that holds the current goal of the system.

- New rules are learned by production compilation
(Taatgen & Anderson, 2002). Two rules that fire in
sequence are combined into a single rule by
substituting the intermediate retrieval into the rule
itself. This creates faster but more specialized
rules. As a declarative memory action is removed
by this process, it may also enable parallelization
of previously serial actions (Lee & Taatgen, 2002).

- ACT-R provides predictions for all the timing
aspects of the model, including eye-movements,
action times, time to retrieve from memory, and so
on.

The model operates in the following manner. We
assume the model of a beginner. Figure 3 gives an
impression of the interface the model interacts with.
This interface was also used in the experiment.
1. A random card is attended out of the set of twelve

available cards.
2. The attributes of this card are stored in the goal.
3. A second card that hasn’t previously been attended

is attended. This card is preferably one that is
similar to the first card. If there are no unattended
cards left we return to step 1. The attended card is
left in the visual buffer. So by the end of step 3,
the first card is in the goal buffer and the second
card is in the visual buffer.

4. The model makes a request to declarative memory
whether the selected combination of two cards has
been tried before. The model doesn’t wait for the
results, but instead starts to make a prediction for
the third card.

5. The model starts making a prediction for the third
card. This means that for each of the four
attributes, based on the contents of the goal and the
visual buffer, the predicted value is copied back
into the goal buffer. For example, if the color in
the goal and in the visual buffer are both red, the
third card also has to be red. If the color in the goal
buffer is red, and in the visual buffer is blue, the
color of the third card has to be... But wait, we
have to determine the third color! That means a
retrieval from declarative memory is needed, but
we are still waiting for declarative memory to
come up with our request from step 4. So as soon
as we hit upon a attribute where the goal and
visual buffer are unequal (and there is at least one
such attribute), we have to wait.

6. Declarative memory either has retrieved that we
have tried the first two cards before, in which case
we return to step 3 to select another second card,
or returns a failure (we haven’t tried the two cards
before or we forgot that we tried them), in which
we can proceed with step 7.

7. Finalize the prediction of the third card.
Declarative memory is available again so we
determine the third value of an attribute if needed.

Figure 3: Impression of the ACT-R model interacting with
the game

8. Scan the cards to see whether the predicted third
card is actually present. If it is, announce a set has
been found, otherwise return to step 1.

As this description shows, declarative memory is at
some point the bottleneck in the process. This
bottleneck is only present in the case of unequal
attribute values. This is the explanation why equal
attribute values are more attractive to scan for first, and
easier to find.

The expert model
The above model is of a beginner. An expert player
might have discovered more strategies in the mean time,
but in our model we will only use the production
compilation mechanism to speed up the processing. As
mentioned in the ACT-R overview, production
compilation combines two rules into one while
substituting the retrieved fact into the rule. The beginner
model has the following two rules:

IF the color in the goal is val1 and the color in the visual
buffer is val2

THEN send a retrieval request for a value that is
different from val1 and val2

IF the retrieval buffer contains val3, different from val1
and val2

THEN put val3 in the goal

Suppose these rules retrieve the fact that red is different
from blue and green, then the learned rule is:

IF the color in the goal is blue and the color in the visual
buffer is green

THEN put red in the goal

The attractive aspect of the rule is that it no longer
requires a retrieval from declarative memory, which
makes it faster than the original rules. But there is an
additional bonus: the waiting in step 5 is no longer
necessary, as the third card can be predicted without
accessing declarative memory. So the expert can skip
step 7, and never has to wait in step 5.

This also explains why experts are mainly better at
the hard sets: with the easy sets most attribute values are
equal, on which the expert has no advantage. But in the
unequal attribute values he (or she, local lore has it that
women are better at set than men) excels.

Figure 4 shows the results of the model, compared to
the human data. All ACT-R’s parameters were left at
their default values, except the latency factor, which
was set to 0.5. Although the match is not exact (the data
is fairly noisy with only eight participants), the two
hypotheses are captured very well.

Implementation in a Game
We used the model to implement a computer game,
where the human player can play the game against
ACT-R. In order to explore several possible opponents,

Figure 4: Results of the model

the application has three different opponents, each with
a beginner and an expert setting. Figure 5 shows the
final Application.
All three models are similar in their reaction times,
about 45 seconds for the beginner setting, and 35
seconds for the expert setting.

Model 1: Fixed time
The first opponent isn’t really based on a model, but
instead on the average time it takes to find a solution.
In the beginner setting the model takes 45 seconds to
find a solution, and in the expert setting 35 seconds.
These times are slightly faster then the averages in the
experiment, reflecting the fact that there is usually more
than one Set on the table. This is the kind of opponent
that is uninteresting to play against, so we expect human
players to favor the more human-like players based on
the ACT-R model.

Model 2: Predicting the third card
The second opponent is based on the ACT-R model
described earlier. The model selects two cards and tries
to predict the third card, and also checks whether the
combination has been tried before. The expert opponent
can do these two things in parallel, while the beginner
opponent has to serialize retrieval and prediction. The
time it takes to perform all these actions are taken from
the ACT-R model.

Model 3: Extension with strategies
Although the ACT-R model is sufficient to explain the
data from the experiment, we felt that the additional
strategies we identified should also be part of a model.
The third model includes the second and third strategy.
Whenever there are six or more cards that share a
certain attribute value, the model tries to find a set
within only these cards. Instead of selecting a random
first and second card, cards with the identified attribute
values are selected.

The third strategy, looking for a card with a unique
attribute value, is used by the expert version only. When
there is a card with a unique attribute value, this card is
selected as first card, and combinations with all other
cards are examined until search moves on to other
combinations.

Evaluation
In order to test the application, we asked seven
volunteers to evaluate the application. All volunteers
had extensive experience in playing Set. In a version in
which the model numbers were randomized and the
ACT-R trace was disabled, they had to interact with the
different models and were asked the following three
questions:

• Do you think the computer behaved like a
human player?

Figure 5: The ACTSet game application. Sliders control the game difficulty and the model that is used. The model’s
behavior can be studied by ticking the “ACT-R’s Thinking” checkbox. In the figure, the model is about to announce that it
has found a Set.

• Do you think the computer is a challenging
opponent?

• Can you notice a difference between the
Beginner and Expert settings of the model?

On each of these questions they had to answer on a five-
point scale, 1 meaning “fully disagree”, and 5 meaning
“fully agree”. They were also asked to guess what
strategy the computer used. The volunteers could freely
interact with the program for an hour, or until they
thought they had seen enough.

Figure 6 shows the results of the evaluation. Model 1,
the fixed-time opponent, was clearly rated lowest on all
three questions. It was judged to be the least human,
despite the fact that only one of the volunteers correctly
guessed the model waits for a fixed time. It was also
rated as the least challenging opponent, despite the fact
that all three models are on average equally fast. Some
volunteers did notice that model 1 often selects
“unlikely hard sets”, while not seeing easy sets right
away. Judgments on model 2 and 3 are more similar,
but notice that model 2 is rated as more human-like than
the more advanced model 3. It is not unlikely this is due
to the fact that the heuristics causes the model to more
often miss obvious sets that are not noticed by the
heuristics.

Discussion and Conclusion
Playing a game against an opponent who never makes a
mistake is usually no fun. Computer opponents can
usually only be beaten because their strategy is too
rigid, and the trick is to exploit the weak spots. The
ACTSet application presented here provides an
attractive computer opponent precisely because it
provides an opponent that is fallible. A common
experience in Set is that when an opponent finds a Set,
you are amazed by the fact that you haven’t seen it
while it was so obvious. The ACT-R opponent is the
same: sometimes it is surprisingly fast at finding a Set,

but sometimes it misses the obvious, and
allows for the human opponent to take
charge.

The application demonstrates how
cognitive models can have a useful role in
the design of computer games. They do not
provide a way to design super-intelligent
computer opponents, but they do provide a
means to create human-like opponents,
including reaction times, errors and maybe
the occasional slip of attention.

It is not yet clear whether the model with
the extra strategies will provide for a more
interesting opponent. The current model 3 is
even slightly worse compared to the more
simple model 2. It is not unlikely only a
certain level of accurateness is needed, after

which additional complexity will not be noticed by the
player, and might even make a less robust opponent.

The model also demonstrates a new example of an
interesting modeling aspect: the fact that expert
behavior is characterized by the ability to do more
things in parallel. The general idea of skill acquisition
discussed in Taatgen and Lee (in press) and Lee and
Taatgen (2002) is that declarative memory is the
bottleneck. Production compilation can eliminate the
bottlenecks as long as the information that is compiled
into the rules is general enough. In the Set model this is
also the case: information about what the third attribute
value is given two other values is stable, and can be
compiled into rules.

Acknowledgements
This research was supported by NWO grant
634.000.002 (I2RP)

Downloading software
The ACTSet program requires Mac OS X to run, and
can be downloaded from:
http://www.ai.rug.nl/~niels/set-app

References
Anderson, J.R. & Lebiere, C. (1998). The atomic

components of thought. Mahwah, NJ: Erlbaum
Lee, F. & Taatgen, N.A. (2002). Multi-tasking as Skill

Acquisition. Proceedings of the twenty-fourth annual
conference of the cognitive science society. Mahwah,
NJ: Erlbaum.

Taatgen, N.A. & Anderson, J.R. (2002). Why do
children learn to say “Broke”? A model of learning
the past tense without feedback. Cognition, 86(2),
123-155.

Taatgen, N.A. & Lee, F. (in press). Production
Compilation: A Simple Mechanism to model
Complex Skill Acquisition. Human Factors.

Figure 6. Results of the evaluation of the application: the three questions
for each model are rated on a 5 point scale.

1

1.5

2

2.5

3

3.5

4

4.5

5

Model 1 Model 2 Model 3

Acts like human?

Challenging
opponent?

Difference
Beginner and
Expert?

